Micro SD Data Sheet

Table of Contents	
1. Introduction to the micro SDSC/SDHC/SDXC	4
2. Micro SDSC/SDHC/SDXC Feature	4
3. Product Specification	6
4. Micro S SDSC/SDHC/SDXC Interface Description	7
5. Mechanical Form Factor	15

Revision History

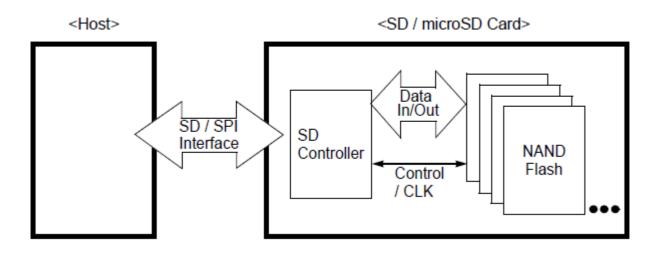
Date	Revision	History
APR 2012	1.0	New Creation

1. Introduction to the micro SDSC/SDHC/SDXC

Micro SD Card is a Flash – Based memory card that is designed to meet the security, capacity, performance and environment requirements inherent to use in emerging audio and video electronic device.

The Micro SD Card communication is based on an advance 8-pin interface (clock, command, 4x Data and 2x power lines) and the Micro SD Memory Card host interface supports regular Multi Media Card operation as well.

2. System Features


%Targeted for portable and stationary applications

- *Capacity of Memory
- (1) Standard Capacity SD Memory card (SDSC): Up to and including 2 GB
- (2) High Capacity SD Memory Card (SDHC): More than 2GB and up to and including 32GB
- (3) Extended Capacity SD Memory Card (SDXC): More than 32GB and up to and including 2TB
- % Voltage range:
 - High Voltage SD Memory Card Operating voltage range: 2.7-3.6 V
- % Designed for read-only and read/write cards.

*Compliant SD Card Specification ver. 3.01

- % Bus Speed Mode (using 4 parallel data lines)
- (1) Default Speed mode: 3.3V signaling, Frequency up to 25 MHz, up to 12.5 MB/sec
- (2) High Speed mode: 3.3V signaling, Frequency up to 50 MHz, up to 25 MB/sec
- (3) SDR12: 1.8V signaling, Frequency up to 25 MHz, up to 12.5MB/sec
- (4) SDR25: 1.8V signaling, Frequency up to 50 MHz, up to 25MB/sec
- (5) SDR50: 1.8V signaling, Frequency up to 100 MHz, up to 50MB/sec
- (6) SDR104: 1.8V signaling, Frequency up to 208 MHz, up to 104MB/sec
- (7) DDR50: 1.8V signaling, Frequency up to 50 MHz, sampled on both clock edges, up to 50MB/sec
- % Switch function command supports High-Speed, and future functions
- % Correction of memory field errors
- % Card removal during read operation will never harm the content
- % Content Protection Mechanism Complies with highest security of SDMI standard.
- %Password Protection of cards (CMD42 LOCK_UNLOCK)
- % Write Protect feature using mechanical switch
- % Built-in write protection features (permanent and temporary)
- % Card Detection (Insertion/Removal)
- ※ Application specific commands
- %Comfortable erase mechanism

2.1 System Block Diagram

2.2 Speed Class

- % Five Speed Classes are defined and indicate minimum performance of the cards
- Class 0 These class cards do not specify performance. It includes all the legacy cards prior to

this specification, regardless of its performance

- Class 2 is more than or equal to 2 MB/sec performance
- Class 4 is more than or equal to 4 MB/sec performance
- ◆ Class 6 is more than or equal to 6 MB/sec performance
- Class 10 is more than or equal to 10 MB/sec performance
- % Dimension: 15.0mm x 11.0mm
- % Support CPRM
- % No external programming voltage required
- SD Memory Card protocol compatible
- % Targeted for portable and stationary applications for secured (copyrights protected) and non-secured data storage
- * Correction of memory field errors
- % Copyrights Protection Mechanism: Complies with highest security of SDMI standard
- % Card Detection (Insertion / Removal)
- * CE and FCC certificates
- % Easy handling for the end user

Notes: The performance depends on different test platform with different result.

· The communication channel is described in the table below

• Micro SDSC/SDHC/SDXC Bus/SPI Bus comparison

Micro SDSC/SDHC/SDXC Using SD Bus	Micro SDSC/SDHC/SDXC Using SPI Bus
Six-wire communication channel	Three-wire serial data bus (Clock, dataIn, data Out)+card
(clock, command, 4 data lines)	specific CS signal(hardwired card selection)
Error-protected data transfer	Optional non protected data transfer mode available
Single or multiple block oriented data transfer	Single or multiple block oriented data transfer

3. Product Specification

3.1 Reliability and Durability Specifications

Temperature	Operating: -25℃ to 85℃ Storage: -40℃(168h) to 85℃(500h)
moisture and corrosion	Operating: 25 ℃ / 95% rel. humidity Non-Operating: 40 ℃ / 93% rel. hum./500h salt water spray: 3% NaCl/35C; 24h acc. MIL STD Method 1009
Durability	10,000 mating cycles
Bending	10N
Torque	0.10N*m. ±2.5° max
Drop Test	1.5m free fall
Visual Inspection/Shape and Form	No warp age; no mold slim; complete form; no cavities; surface smoothness≦-0.1mm/ cm2 within contour; no cracks; no pollution (oil, dust, etc.)

3.2 System Reliability and Maintenance

MTBF	>1,000,000 hours
Preventive Maintenance	None
Data Reliability	< 1 non-recoverable error in 1014 bits read
Endurance	MLC 3,000~10,000 write/erase cycles
	TLC 500~1,000 write/erase cycles

3.3 Electrical Static Discharge (ESD) requirement

ESD Protection	Contact Discharge:	±4KV, Human body model according to IEC61000-4-2.EN55024
	Air Discharge;	±8KV, Human body model according to IEC61000-4-2.EN55024

4. Micro SDSC/SDHC/SCXC Interface Description

4.1 General Description of Pins and Registers

The Micro SDHC has nine exposed contacts on one side. The host is connected to the SD Memory Card using a eight pin connector.

Pin Assignment in SD Bus Mode Pad Definition

Pin #	Name	Туре	Micro SD Description		
1	DAT2	I/O	Card Detect/ Data Lin [Bit 3]		
2	CD/DAT3	I/O	Card Detect / Data Line		
3	CMD	PP	Command / Response		
4	VDD	S	Supply voltage		
5	CLK	I	Clock		
6	Vss	S	Supply voltage ground		
7	DAT0	I/O	Data Line [Bit 0]		
8	DAT1	I/O	Data Line [Bit 1]		

Note:

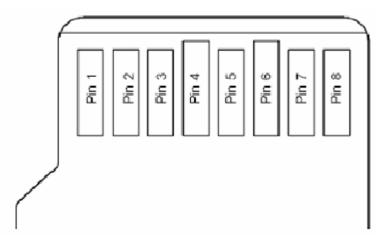
1) S=power supply; l=input; O=output using push-pull drivers.

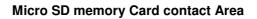
2) The extended DAT lines (DAT1-DAT3) are input on power up; they start to operate as DAT lines after the SET _BUS_WIDTH command.

3) After power up, this line is input with 50Kohm pull-up (can be used for card detection or SPI mode selection). The pull-up should be disconnected by the user, during regular data transfer, with SET_CLR_CARD_DETECT (ACMD42) command.

Pin Assignment in SPI Bus Mode Pad Definition

Pin #	Name	Туре	Micro SD Description		
1	RSV		Reserved		
2	CS	I	Chip Select (neg true)		
3	DI	S	Data In		
4	VDD	S	Supply Voltage		
5	SCLK		Clock		
6	VSS	S	Supply Voltage Ground		
7	DO	0	Data Out		
8	RSV	I	Reserved		

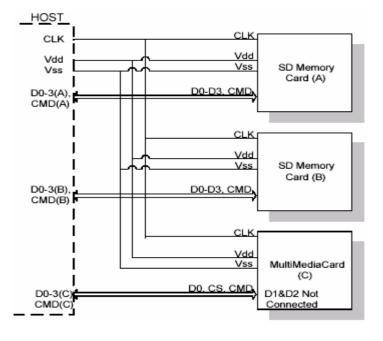

Each card has a set of information registers


Micro SD Memory Card Registers

Name	Width	Description
CID	128	Card identification number: individual card number for identification.
RCA	16	Relative card address: local system address of a card dynamically suggested by the card and approved by the host during initialization
CSD	128	Card specific data: information about the card operation conditions.
SCR	64	SD Configuration Register: information about the Micro SD Card's special feature capabilities.
OCR	32	Operation Condition Register

The host may reset the cards by switching the power supply off and on again. The card has its own power-on detection circuitry which puts the card into an idle state after the power-on. The card can also be reset by sending the GO_IDLE (CMD0) command.

Micro SD memory Card Pin Assignment



4.2 SD Bus Topology

The SD bus has six communication lines and three supply lines:

- CMD: Command is bi-directional signal.(Host and card drivers are operating in push pull mode.)
- DAT0-3: Data lines are bi-directional signals. (Host and card drivers are operating in push pull mode.).
- · CLK: Clock is a host to cards signal. (CLK operates in push pull mode.)
- VDD: VDD is the power supply line for all cards.
- VSS [1:2]: VSS are two ground lines.
- The following figure shows the bus topology of several cards with one host in SD Bus mode.

Micro SD Memory Card System Bus Topology

During the initialization process, commands are sent to each card individually, allowing the application to detect the cards and assign logical addresses to the physical slots. Data is always sent to each card individually. However, to simplify the handling of the card stack, after initialization, all commands may be sent concurrently to all cards. Addressing information is provided in the command packet.

The Micro SD Bus allows dynamic configuration of the number of data lines. After power-up, by default, the Micro SD Memory Card will use only DAT0 for data transfer. After initialization, the host can change the bus width (number of active data lines). This feature allows and easy trade off between hardware cost and system performance.

4.2.1 Power Protection

Card can be inserted into or removed from the bus without damage. If one of the supply pins (VDD or Vss) is not connected properly, then the current is drawn through a data line to supply the card.

Data transfer operations are protected by CRC codes; therefore, any bit changes induced by card insertion and removal can be detected by the Micro SD bus master. The inserted card must be properly reset also when CLK carries a clock frequency fpp.

If the hot insertion feature is implemented in the host, than the host has to withstand a shortcut between VDD and Vss without damage.

4.3 SPI Bus Topology

The memory Card SPI interface is compatible with SPI hosts available on the market. As any other SPI device the Micro SD Memory Card SPI channel consists of the following 4 signals:

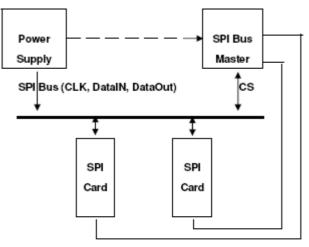
1) CS: Host to card Chip Select signal.

2) SCLK: Host to card clock signal.

3) Data In: Host to card data signal.

4) Data Out: Card to host data signal.

Another SPI common characteristic, which is implemented in the Memory Card as well, is byte transfers. All data tokens are multiples of 8 bit bytes and always byte aligned to the CS signal.


The SPI standard defines the physical link only and not the complete data transfer protocol. In SPI Bus mode, the Micro SD Memory Card uses a subset of the Micro SD Memory Card protocol and command set.

The Micro SD Memory Card identification and addressing algorithms are replaced by a hardware Chip Select (CS) signal.

A card (slave) is selected, for every command, by asserting (active low) the CS signal.

The CS signal must be continuously active for the duration of the SPI transaction (command, response and data). The only exception is card programming time. At this time the host can de-assert the CS signal without affecting the programming process.

The bi-directional CMD and DAT lines are replaced by uni-directional data In and data Out signals. This eliminates the ability of executing commands while data is being read or written. An exception is the multi read/write operations. The Stop Transmission command can be sent during data read. In the multi block write operation a Stop Transmission token is sent as the first byte of the data block.

SD Memory Card Bus System

4.4 Electrical Interface

The power up of the SD Memory Card bus is handled locally in each SD Memory Card and in the bus master.

4.4.1 Operating Conditions

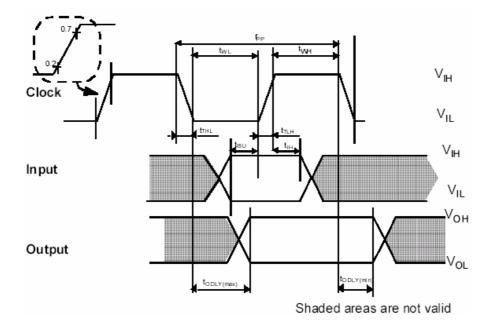
SPI Mode bus operating conditions are identical to SD Memory Card mode bus operating conditions. The CS (chip select) signal timing is identical to the input signal timing.

Power Supply Voltage

General							
Parameter	Symbol	Min.	Max.	Unit	Remark		
Peak voltage on all lines		-0.3	3.6	v			
	All Inputs						
Input Leakage Current	Input Leakage Current -10 10 uA						
	All Outputs						
Output Leakage Current		-10	10	uA			
	Power	supply Vo	Itage				
Parameter	Symbol	Min.	Max.	Unit	Remark		
Supply Voltage for High voltage range	VDDH	2.7	3.6	v			
Supply voltage differentials (Vss1, Vss2)		-0.5	0.5	v			

Bus Signal Line Load

The total capacitance CL of the CLK line of the SD Memory Card bus is the sum of the bus master capacitance CHOST, the bus capacitance CBUS itself and the capacitance CCARD of each card connected to this line:

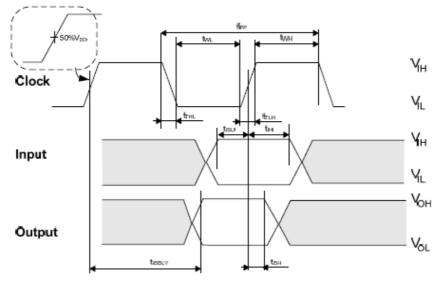

CL = CHOST + CBUS + N * CCARD

Where N is the number of connected cards. Requiring the sum of the host and bus capacitances not to exceed 30 pF for up to 10 cards, and 40 pF for up to 30 cards, the following values must not be exceeded:

Signal Line's Load

Parameter	Symbol	Min.	Max.	Unit	Remark
Pull-up resistance	RCMD	10	100	kΩ	To prevent bus floating
Total Bus capacitance for each signal line	сL		40	pF	Single Card CHOST +CBUS Shall not exceed 30 pF
Maximum signal line inductance			16	nH	fPP ≤20 MHz
Pull-up resistance inside card (pin1)	RDATS	10	90	kΩ	May be used for card detection

4.4.2 Bus Timing (Default)



Timing Diagram Data Input. Output Referenced to Clock

Bus Timing (default mode)

Parameter	Symbol	Min.	Max.	Unit	Remark			
Clock CLK (All values are referred to min.(VIH) and max.(VIL))								
Clock Frequency Data Transfer Mode	fPP	0	25	MHz				
Clock Frequency Identification Mode(The								
low frequency is required for SDCard	fop	0	400	KHz				
compatibility)								
Clock Low Time	tWL	10		ns				
Clock High Time	twн	10		ns				
Inputs CM	ND,DAT(ref	erenced to	CLK)					
Input set-up time	tisu	5		ns				
Input hold time	tін	5		ns				
Outputs C	MD, DAT(re	ferenced	to CLK)					
Output delay time during Data Transfer	100111		14					
Mode	tODLY		14	ns				
Output delay time during Identification	topuy		50	ns				
Mode	tODLY		- 30	115				

4.4.3 Bus Timing (High-Speed Mode)

Shaded areas are not valid

Parameter	Symbol	Min	Max.	Unit	Remark
Clock CLK (All values are referred to min (VI	_H) and max (V _{IL}),			•
Clock frequency Data Transfer Mode	f _{PP}	0	50	MHz	C _{CARD} ≤ 10 pF (1 card)
Clock low time	t _{WL}	7		ns	C _{CARD} ≤ 10 pF (1 card)
Clock high time	t _{WH}	7		ns	C _{CARD} ≤ 10 pF (1 card)
Clock rise time	t _{TLH}		3	ns	C _{CARD} ≤ 10 pF (1 card)
Clock fall time	t _{THL}		3	ns	C _{CARD} ≤ 10 pF (1 card)
Inputs CMD, DAT (referenced to CLK)					
Input set-up time	t _{ISU}	6		ns	C _{CARD} ≤ 10 pF (1 card)
Input hold time	t _{IH}	2		ns	C _{CARD} ≤ 10 pF

Parameter	Symbol	Min	Max.	Unit	Remark
					(1 card)
Outputs CMD, DAT (referenced to CLK)					
Output Delay time during Data Transfer Mode	t _{ODLY}		14	ns	C _L ≤ 40 pF (1 card)
Output Hold time	t _{OH}	2.5		ns	C _L ≥ 15pF (1 card)
Total System capacitance for each line ¹	CL		40	pF	1 card

1) In order to satisfy severe timing, host shall drive only one card.

4.5 Micro SDSC/SDHC /SDXC Registers

There is a set of seven registers within the card interface. The OCR, CID, CSD and SCR registers carry the card configuration information. The RCA register holds the card relative communication address for the current session. The card status and SD status registers hold the communication protocol related status of the card.

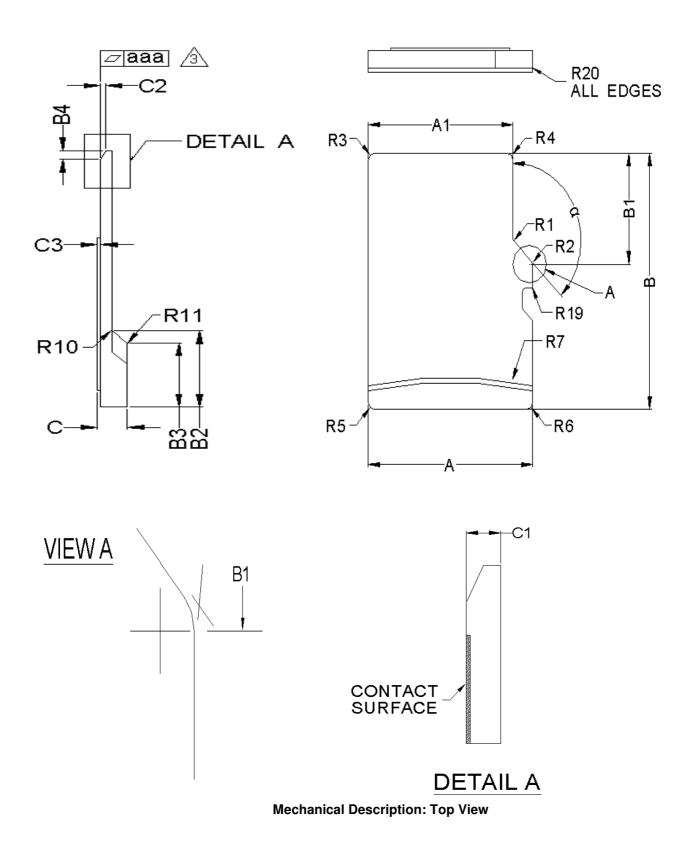
4.5.1 Operating Conditions Register (OCR)

The 32-bit operation conditions register stores the VDD voltage profile of the card. The SD Memory Card is capable of executing the voltage recognition procedure (CMD1) with any standard SD Memory Card host using operating voltages form 2 to 3.6 Volts.

Accessing the data in the memory array, however, requires 2.7 to 3.6 Volts. The OCR shows the voltage range in which the card data can be accessed. The structure of the OCR register is described in under table.

OCR Bit	VDD Voltage Window				
0-3	Reserved				
4	Reserved				
5	Reserved				
6	Reserved				
7	Reserved				
8	Reserved				
9	Reserved				
10	Reserved				
11	Reserved				
12	Reserved				
13	Reserved				
14	Reserved				
15	2.7-2.8				
16	2.8-2.9				
17	2.9-3.0				
18	3.0-3.1				
19	3.1-3.2				
20	3.2-3.3				
21	3.3-3.4				
22	3.4-3.5				
23	3.5-3.6				
24-29	Reserved				
30	Card Capacity Status (CCS)				
31	Card power up status bit (busy)				

OCR Register Definition


4.5.2 Card Identification (CID) Register

The CID register is 16 bytes long and contains a unique card identification number as shown in the table below. It is programmed during card manufacturing and can not be changed by SD Memory Card hosts. Note that the CID register in the SD Memory Card has a different structure than the CID register in the Multimedia Card

Name	Type	Width	CID - Slice	Comments
Manufacturer ID(MID)	Binary	8	[127:120]	The manufacturer IDs are controlled and assigned by the SD Memory Card Association.
OEM/Application ID(OID)	ASC∏	16	[119:104]	Identifies the card OEM and/or the card contents. The OID is assigned by the 3C.
Product Name(PNM)	ASC II	40	[103:64]	5ASC characters long
Product Revision (PRV)	BCD	8	[63:56]	Two binary coded decimal digits
Serial Number (PSN)	Binary	32	[55:24]	32 Bits unsigned integer
Reserved		4	[23:20]	
Manufacturing Data Code(MDT)	BCD	12	[19:8]	Manufacturing date-yym(offset from 2000)
CRC7 checksum(CRC)	Binary	7	[7:1]	Calculated
Not used, always '1'		1	[0:0]	

CID Fields

5. Mechanical Form Factor

COMMON DIMENSIONS						
		NOTE				
SYMBOL	MIN	NOM	MAX	NOTE		
A	10.90	11.00	11.10			
<u>A1</u>	9.60	9.70	9.80	D A GLG		
A2	-	3.85	-	BASIC		
A3	7.60	7.70	7.80	5.4.67.6		
A4	-	1.10	-	BASIC		
A5	0.75	0.80	0.85			
<u>A6</u>	-	-	8.50			
A7	0.90	-	-			
A8	0.60	0.70	0.80			
A9	0.80	-	-			
A10	1.35	1.40	1.45			
A11	6.50	6.60	6.70			
A12	0.50	0.55	0.60			
A13	0.40	0.45	0.50			
В	14.90	15.00	15.10			
B1	6.30	6.40	6.50			
B2	1.64	1.84	2.04			
B3	1.30	1.50	1.70			
B4	0.42	0.52	0.62			
B5	2.80	2.90	3.00			
B6	5.50	-	-			
B7	0.20	0.30	0.40			
B8	1.00	1.10	1.20			
B9	-	-	9.00			
B10	7.80	7.90	8.00			
B11	1.10	1.20	1.30			
B12	3.60	3.70	3.80			
B12	2.80	2.90	3.00			
B14	8.20	-	-			
B15	-	_	6.20			
C	0.90	1.00	1.10			
<u>C1</u>	0.60	0.70	0.80			
C2	0.00	0.30	0.40			
C3	0.00	0.50	0.15			
D1	1.00	_	0.15			
D1 D2	1.00	-	_			
D2 D3	1.00	_	_			
R1	0.20	0.40	0.60			
R1 R2	0.20	0.40	0.60			
R2 R3	0.20	0.40	0.00			
R4	0.70	0.80	0.90			
R5	0.60	0.80	0.90			
R6	0.60	0.80	0.90			
R7	29.50	30.00	30.50			
R10	-	0.20	-			
R11	-	0.20	-			
R17	0.10	0.20	0.30			
R18	0.20	0.40	0.60			
R19	0.05	-	0.20			
R20	<u>A</u>	-	0.15			
α	133°	135°	137°			
aaa			0.10			

Micro SDSC / SDHC / SDXC

Notes :

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2. DIMENSIONS ARE IN MILLIMETERS.
- <u>A</u> COPLANARITY IS ADDITIVE TO C1 MAX THICKNESS.
- ALL EDGES SHALL NOT BE SHARP AS TESTED PER UL1439 "Test for Sharpness of Edges on Equipment."
- 5. Refer to Appendix E about test method of warpage.

Micro SD Package : Dimensions